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Abstract

Performing detailed simulation of clocked analog circuits (e.g. switched-capacitor filters
and switching power supplies) with circuit simulation programs like SPICE is
computationally very expensive. In this paper we present a new, more efficient, method
for computing the detailed steady-state solution of clocked analog circuits. The method
exploits the property of such circuits that the waveforms in each clock cycle are similar
but not exact duplicates of the proceeding or following cycles. Therefore, by computing
accurately a few selected cycles, the entire steady-state solution can be constructed
efficiently,
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A Mixed Frequency-Time Approach for
Finding the Steady-State Solution of

Clocked Analog Circuits

K. Kundert. J. White, A. Sangiovanni-Vincentelli
Dept. of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

Performing detailed simulation of clocked analog circuits (e.g.
switched-capacitor filters and switching power supplies) with circuit
simulation programs like SPICE is computationally very expensive.
In this paper we present a new, more efficient, method for comput-
ing the detailed steady-state solution of clocked analog circuits. The
method exploits the property of such circuits that the waveforms in
each clock cycle are similar but not exact duplicates of the proceeding
or following cycles. Therefore, by computing accurately a few selected
cycles, the entire steady-state solution can be constructed efficiently.

1 Introduction

In general, analog circuit designers rely heavily on circuit simulation pro-
grams like SPICE [nagel75] or ASTAP [weeks73] to insure the correctness
and the performance of their designs. These programs simulate a circuit
by first constructing a system of differential equations that describes the
circuit, and then solving the system numerically with a time discretization
method such as backward-Euler. When applied to simulating clocked ana-
log circuits, like the switched-capacitor filters used in integrated circuits or



the switching converters used in high power applications, the classical cir-
cuit simulation algorithms become extraordinarily computationally expen-
sive. This is because the period of the clock is usually orders of magnitude
smaller than the time interval of interest to a designer. The nature of the
calculations used in a circuit simulator implies that an accurate solution
must be computed for every cycle of the clock in the interval of interest,
and this can involve thousands of cycles.

In this paper we present another approach to the simulation of clocked
analog circuits for the particular case of computing the steady-state solu-
tion. The method exploits the property of these circuits that node voltage
waveforms over a given high frequency clock cycle are similar, but not exact
duplicates, of the node voltages waveforms in proceeding or following cy-
cles. This suggests that it is possible to construct a solution accurate over
many high frequency clock cycles by calculating the solution accurately for
a few selected cycles.

We begin, in the next section, by describing our assumptions about
clocked analog circuits in steady-state and presenting a mixed frequency-
time method. In section three we will discuss some of the computations
involved in this method. In section four we examine the application of the
frequency-time method to simulating switched-capacitor filters and present
comparison results. Finally, in section five, we present our conclusions and
acknowledgements.

2 The Mixed Frequency-Time Method

Very little can be assumed about behavior of the node voltage waveforms
in a clocked analog circuit over a given clock cycle, because the circuits
involved are very nonlinear and are usually switching rapidly. However, the
node voltage waveforms over a whole clock cycle usually vary slowly from
one cycle to the next, as controlled by the input signal. This implies that if
the input is periodic, and the clocked analog circuit is in steady-state, then
the sequence formed by sampling the node voltages at the beginning of each
clock cycle is periodic (Fig. 1). We derive our method by assuming this to
be true, and further assuming that the periodic function that describes the
sequence of initial points in each clock cycle can be accurately represented
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as a truncated Fourier series using few terms.
If the sequence of initial points of each clock cycle can be described by

a Fourier series with J terms, then once J initial points are known, all the
initial points are known. This implies that given our Fourier assumption,
to compute the steady state behavior of a clocked analog circuit we need
only find the initial points of J clock cycles.

In the next two subsections we describe two relationships that can be
exploited to construct a nonlinear algebraic system of J equations in J ini-
tial points (solving this system is discussed in section 3). The first relation,
described in section 2.1, is derived from the Fourier series assumption, and
is a linear relationship between the initial points of an evenly distributed set
of J cycles and the initial points of the corresponding J cycles that imme-
diately follow. The second relation is derived from solving the differential
equation system that describes the analog circuit, for the time interval of
one clock cycle, J times, each time using one of the distributed set of J
initial points as an initia condition. This results in another set of values for
the initial points of the following J cycles. Insisting that this set match the
set resulting from the Fourier relation yields a nonlinear algebraic system
in J unknowns, which can be solved for the J initial points, and this is
described in section 2.2.

2.1 The Delay Operator

Consider the sequence of initial points of each clock cycle at some circuit
node n, and denote the sequence by v,(r), v,,(r2),... , v,,(rs) where S is the
number of clock cycles in an input period. It is assumed that this sequence
can be accurately approximated by a truncated Fourier series, and therefore

K
Vo+ E(Vccoskwr + vs sinkwr) = v,(r 5 ),

k= 1

where w is the fundamental frequency of the input signal, K is the num-
ber of harmonics and J = 2K + 1 is the number of unknown coefficients.
Given (1), there is a linear relation between any collection of J initial
points and any other collection of J initial points. However, as mentioned
above, we are most interested in the linear operator that maps a collection
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Figure 1: The response of a clocked analog circuit and the periodic function
of the initial points. The J cycles used in the calculation are emphasized.
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V(,m),... ,v(i,) into v(r, + T),... ,v(r,, + T) where T is the clock pe-
riod and .i... , 7J} is a subset of {1,..., S}. This linear operator will be
referred to as the delay matrix.

Deriving the delay matrix is a two stage process. First, the J points,
7(Tm),... , t~r,,) are used to calculate the Fourier coefficients. Then the
Fourier series (using these coefficients) is evaluated at the J times, r,, +
T,..., r., + T. The Fourier coefficients are then eliminated to yield the
desired direct relation. To compute the Fourier coefficients, write (1) as a
system of J linear equation in J unknowns [kundert88a],

V0

I v.(-r,,)

1  = v(,V,) (2)
V R

K LL vV(KS i

where r-1 E RxJ is given by

- 1 cos wr,, sin wr,, ... cos K7r,, sin Kwr,,
1 cos wr, sin wri- ... cos Kw,, 2 sin KWT,
1 coswr sin wr,, " cos KwTr, sin Kwr,S (3)

1 coswT, sinwr,, ... cosKwi, , sinKwr,, -

The matrix r-1 maps the Fourier coefficients to a sequence and is re-
ferred to as the inverse discrete Fourier transform. If the times r,7,..., r,,
are reasonably evenly distributed over one period of the input signal, then
r-1 is invertible. Its inverse, the forward discrete Fourier transform, is
denoted by r. We can also write

V0
VR V,,-,, + T)

r-(T) V =s  vn(r,? + T) (4)

vKR
L V-S vn(r, + T)

5



where Fr-(T) E R J is given by

1 cosw(r, +T) sinw(r,. +T) sinKw(r, +T)
1 cosw(r,+T) sinw(r,,+T) ... sinKw(r, + T)
1 coew(r,, + T) sinw(r, + T) ... sinKw(r,, + T) (5)

1 cosw(r, +T) sinw(r,. +T) ... sin Kw(r, + T)

Given a sequence, a delayed version is computed by applying r to the
sequence to compute the Fourier coefficients, and then multipling the vector
of coefficients by F-1 (T).

V,(,, + T) ()v.(r,, + T) V(rv() 1
+ r- 1 (T)r (6)

.(. + T) v,(r,,) J
Thus, the delay matrix, V(T) E 3d1c1, is defined as

V(T) = r-(T)r. (7) -

As the delay matrix is a function only of w, K, {,. ,r,,,} and T, it can
be computed once and used for every node.

2.2 The Differential Equation Relation

We assume that any clocked analog circuit to be simulated can be described
by a system of differential equations of the form

dq(u(t), U(t)) + i(v(t), u(t)) = 0, (8)

where v(t) E RN is the vector of node voltages, u(t) E RM is the vector of
input sources, q(v(t), u(t)) E RN is the vector of sums of charges entering
each node, and i(v(t), u(t)) E 3N is the vector of sums of currents entering
each node. If the node voltages are known at some time to, it is possible to
solve (8) and compute the node voltages at some later time t1 . In general,
one can write

v(ti) = O(V(to), to, ti) (9)
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where i is referred to as the state transition function for the differential
equation and can be expanded as [ O'(v(to), to, t1) 1

O((to), to,ti)= : (10)

I4N(V(to), to, ti)

where ,, :Nx ._ R for all n E {1,... ,N}.
Now reconsider the J initial points at some circuit node n, v,(T, ).

v,,(r,,). For each j E {1,. ., J} and each n E I...,N} we can write

v,(r,, + T) = 0,(v(r,,),T,,,,,,, +T) (11)

where T is the clock period. Note that v,,(r,, + T) is the initial point of
the cycle immediately following the cycle beginning at r,,. Also, the node
voltages at r,,, can be related to the node voltages at T,, + T by the delay
matrix, D(T). That is,

51 [.V(.,) rv,,(,-, +T) ]
D(T) [ = [ (12)

V,(r'.1) v,,(r.: + T)

It is possible to use (11) to eliminate the v.(r,, +T) terms from (12), which
yields .( . ,, , + T)

P(T) 1= ] (13)
V,(r..) On(v(r7), r,7j, r,7 + T)

for each n E {1,...,N}.
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3 Solution by Newton-Raphson

The collection of equations given in (13) can be reorganized into a system
of NJ equations in NJ unknowns as

vl,,,) 01 (v(r,,), r,, r, + T)

( ~~vN(T~ 7NV r)0mT + T)
F (VN(T) : (14)

,(,,) 0 (v(,),,- . + T)

VN(,?,) ON(,(T,,), ',,, 7n, + T)

and
F (v:,) = ,

where F: RNJ _. RNJ, and VNE R NJxNJ is given by
dllIN ... dljIN

DN(T) - : (16)
d[iIN ... dJJIN

where di, E R is the ijth element of the delay mtrix D(T), and IN E R
is the identity matrix.

Applying Newton's method to (14) leads to the iteration equation

(V' (7r,) v(')(Th) - v(')(Tr) v(1)(r,,,)
JF : J[ -1-Fl (17)

v(Q)(T,1,) 1 ,+1)(,7j -I) 77.v(1) (r,,)J

where I is the iteration number and JF E RNJXNJ is the Frechet derivative
of F given by

(8 (v() ,rr + T) O (v(T,,, ,-,, ,,t) + T))
DN(T)-diag 80(, + .TT (18)

i i lm a dq ~ iNaai i u l l i iillil "8



There are two important pieces to the computation of one Newton iter-
ation. Factoring the matrix JF, which is sparse, and evaluating JF and F,
which involves computing the state transition function, O(v(T",,), r,,,, 7 +
T), and its derivative for each j E { 1 ,...,J). The state transition functions
can be evaluated by numerically integrating (8) over the J periods. The
derivatives of the state transition functions, referred to as the sensitivity
matrices, can be computed with a small amount of additional work during
the numerical integration.

To show how the computation of the state transition function and its
derivative fit together, consider numerically integrating (8) with backward-
Euler, which we chose for simplicity and because it appears to be one of
the best formulas for clocked analog circuits. Given some initial time to
and some initial condition, v(to), applying backward-Euler to (8) results in
the following algebraic equation,

f(v(to + h), v(to)) = 1 (q(v(to + h)) - q(v(to))) + i(v(to + h)) = 0 (19)

where h E R is the timestep. Note we have dropped explicitly denoting the
dependence of q and i on the input u for simplicity.

Equation (19) is usually solved with Newton-Raphson, for which the
iteration equation is

Jj(v(1 (to + h))(v('+1)(to + h) - v()(to + h)) -f(v')(to + h), v()(to)) (20)

where .7Tv(t)) E RNXN is the Frechet derivative of the nonlinear equation
in (19) and is given by

Of(v(t),.) 1 Oq(v(t)) ai(v(t))

o v(t) - h 8v(t) Ov(t)

Solving (19) yields an approximation to v(to + h) = O(v(to), to, to + h).
Implicitly differentiating (19) for v(to + h) with respect to v(to) yields

i) (to + h) 1 8q(v(to)) 9v(to)
11 (v(t+h) "v(to) =h ov(to) Ov(to) (22)

Given a v(to), (19) can be repeatedly applied to find v(to + T) =

O(v(to), to, to + T), and (22) can be repeatedly applied to find the sensi-
tivity matrix Ov(to + T)/Ov(to) = 84'(v(to), to, to + T)/lOv(to) [kundert88b].
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Note that J is required in both (20) and (22), and thus the sensitivity
matrix update can be made more efficient by factoring J! once and using
it for both computations. However, the sensitivity matrix is still expensive
to compute, because it is an N x N full matrix. We return to this point at
the end of section 4.

4 Switched-Capacitor Filter Simulation

It has been possible for several years to fabricate complex analog circuits
like switched-capacitor (SC) filters on a single integrated circuit. As with
any integrated circuit design, since the cost of fabrication is very high, it
is desirable to first simulate extensively the design. Detailed simulation of
such circuits with SPICE is too computationally expensive, and therefore
other, faster but less accurate, approaches are used. However the mixed
frequeLcy-time approach described above can perform fast and accurate
detailed simulation of SC filters, and is particularly efficient on this class
of circuit for several reasons. First, SC filters are usually followed by a
sampler, and so only the initial point of each cycle is needed. Second,
the circuits are designed so that the distortion present in the sequence of
initial points is small, so if driven by a sinusoid, only a few harmonics are
significant and only a few clock cycles need to be computed. Finally, the
state transition function for an SC filter over a clock cycle is near linear,
and therefore the Newton method in (17) converges in just a few iterations.

In this section we describe our program Nitiwit, a detailed simulator for
SC filters. We start in the next section by describing previous work in SC
filter simulation, and then in Sectior. 4.2 we present our results.

4.1 Comparison to Previous Work

The most common approach to simulating an SC filter is first to break
the circuit up into functioial blocks such as operational amplifiers and
switches. Each functional bock is simulated, using a traditional circuit
simulator, for some short period. The simulations of the functional blocks
are used to construct extremely simple macromodels, which replace the
functional blocks in the circuit. The result is a much simplified circuit

10



that can be simulated easily. This simplified circuit is then simulated for
the thousands of clocks cycles necessary to construct a solution meaningful
enough to verify the design.

Ad hoc simulators of this macromodeling sort have commonly been
written by frustrated analog designers, but the techniques have also been
formalized in programs like Diana [deman80] and Switcap [tsividis79]. Al-
though these programs have served designers well, a macromodeling ap-
proach is only as good as the macromodel. If a second order effect in a
functional block changes overall performance, but this effect is not included
in the macromodel, the effect will never be seen in the simulation.

The simulators traditionally intended for use with SC filters, such as
Diana and Switcap, also make the "slow-clock" approximation. After each
clock transition, every node in the circuit is assumed to reach its equilibrium
point before another transition occurs. This assumption, along with the
use of algebraic macromodels, allow the filter to be treated as a discrete-
time system with one time point per clock transition. A set of difference
equations is then used to describe the filter.

O • The slow-clock approach suffers from several serious drawbacks. First.
SC filters are being pushed to operate at ever higher frequencies, and the
assumption that signals reach equilibrium between clock transitions is often
violated. Also, since signals between clock transitions are not computed, it
is possible to miss events that occur in these intervals that might interfere
with proper and reliable operation (e.g., clock feed-through spikes causing
an operational amplifier to saturate). Lastly, it is not possible to capture
the effects of dynamic distortion processes, such as the important effect of
the channel conductance on charge redistribution when a transistor switch
turns off.

The mixed frequency-time approach can accelerate the detailed simu-
lation of SC filters without resorting to macromodeling or the slow-clock
assumption. Thus, it does not suffer from the limitations detailed above.
It also does not require a large investment in macromodeling and is suit-
able for use with automated circuit extractors. Since our approach finds
the steady-state solution directly and performs a circuit-level simulation,
it is capable of accurately predicting distortion performance. Though not
specifically described in this paper, this mixed frequency-time approach can
also be used when the input consists of the sum of two periodic signals at
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unrelated frequencies. Thus, the intermodulation distortion can be directly
computed, which is particularly useful for bandpass filters. Also, the fact
that steady-state is computed directly, implies an additional advantage over
transient methods when high-Q filters are simulated. One final point, the
mixed frequency-time method can also be adapted to the macromodeling
approach used in other SC filter simulators, accelerating those methods as
well when the steady-state solution is desired.

4.2 Results

Nitawit is a C program that uses the algorithms presented in this paper
to simulate SC filters. It contains two algorithms capable of finding the
steady-state response of a circuit. The first is simply a transient analysis
that continues until any steady-state is achieved. The second, of course, is
the mixed frequency-time algorithm. Coding both algorithms into the same
simulator provides a fair evaluation of the mixed frequency-time approach.

Results for three circuits are given below. The first, acipf, is an RC
one-pole SC filter. The second, scop, is a one pole active CMOS low pass 0
filter. The last, frog, is a five pole Chebyshev active CMOS leap frog filter
with 0.1dB ripple. This circuit is driven with a IMHz clock, has a 20kHz
bandwidth, and is being driven with a lkHz test signal to measure its
distortion.

circuit direct mixed frequency-time
name nodes cycles/ time harmonics, Newton time

period (sec) cycles iterations (sec)
sc lpf 2 33 24.5 3,7 3 4.3
Scop 13 100 522 3,7 6 90
frog 77 1000 12,987 3,7 6 1228

Table 1. Nitswit results from a VAX 8650 running ULTRIX 2.0.

Examination of the results above indicate as much as an order of magni-
tude speed increase over traditional methods, but this is not as much as one
would expect. Much of the CPU time for large circuits is spent calculating
the dense sensitivity matrix and factoring the Jacobian in (18). It does
turn out however, that almost all the entries of the sensitivity matrix are
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approximately zero, and this suggests significant speed improvements can
be achieved by ignoring those terms. In addition, we expect to get improved
performance by switching to relaxation techniques to solve (14). Prelim-
inary experiments indicate the relaxation converges quickly and reliably,
and is much faster than sparse LU factorization.

5 Conclusion

A new mixed frequency and time method for computing the steady-state
solution of clocked analog circuits has been presented. The method works
by computing the solution to the differential equation system associated
with a circuit for only J clock cycles, where J is the number coefficients
needed in the Fourier series to represent accurately the sequence of initial
points in each clock cycle. Thus, this method is particularly efficient when
the number of coefficients in the Fourier series is many fewer than the
number of clock cycles in one input signal period.

We have shown the mixed frequency-time algorithm to be an efficient
e. method for the detailed simulation of switched-capacitor filters. It also

appears promising for use on other traditionally hard to simulate circuits
like switching power supplies and phase-locked loops. Another important
aspect of this algorithm is that, upon examination of (14), it is clear that
the J integrations of the differential equation to compute the J O's and
their derivatives are independent. The other step, solving the sparse matrix
problem in (17), seems, as mentioned above, to be very amenable to solution
by relaxation. Therefore, the mixed frequency-time algorithm is extremely
well suited to implementation on a parallel processor.

5.1 Acknowledgements

We would like to acknowledge the discussions with Professor A. R. Newton;
the help of Robert Armstrong, Mark Richelt, and Hormoz Yaghutiel; and
the support of Barbara Bratzel and Mary Glanville. In addition, we would
like to thank Res Saleh, for bailing us out, again. This work was supported
by the Defense Advanced Research Projects Agency contract N00014-87-
K-825, Hewlett-Packard, and the California MICRO program.

13



References

(deman8O] H. De Man, J. Rabaey, G. Amout, J. Vandewalle. "Practical
implementation of a general computer aided design technique
for switched capacitor circuits." IEEE Journal of Solid-State
Circuits, vol. SC-15, pp. 190-200, April 1980.

[kundert88a] K. S. Kundert, G. B. Sorkin, A. Sangiovanni-Vincentelli.
"Applying harmonic balance to almost-periodic circuits."
IEEE Transactions on Microwave Theory and Techniques,
vol. MTT-36, February 1988.

[kundert88b] K. S. Kundert, A. Sangiovanni-Vincentelli, T. Sugawara.
"Techniques for finding the periodic steady-state response of
circuits." In Analog Methods for Circuit Analysis and Diag-
nosis. To be published by Marcel Dekker in 1988.

[nage175] L. W. Nagel. SPICE2: A Computer Program to Simulate
Semiconductor Circuits. Electronics Research Lab Report,
ERL M520, Univ. of Calif., Berkeley, May 1975.

[tsividis79] Y. P. Tsividis. "Analysis of switched capacitor networks."
IEEE Transactions on Circuits and Systems, vol. CAS-26,
pp. 935-946, November 1979.

[weeks73] W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta,
H. Quasemzadeh, T. R. Scott. "Algorithms for ASTAP - A
Network Analysis Program." IEEE Transactions on Circuit
Theory, pp. 628-634, Nov. 1973.

14

iS


